Quantum stabilizer codes and classical linear codes
نویسندگان
چکیده
منابع مشابه
Quantum Stabilizer Codes and Classical Linear Codes
We show that within any quantum stabilizer code there lurks a classical binary linear code with similar error-correcting capabilities, thereby demonstrating new connections between quantum codes and classical codes. Using this result—which applies to degenerate as well as nondegenerate codes— previously established necessary conditions for classical linear codes can be easily translated into ne...
متن کاملNonbinary quantum stabilizer codes
We define and show how to construct nonbinary quantum stabilizer codes. Our approach is based on nonbinary error bases. It generalizes the relationship between selforthogonal codes over F4 and binary quantum codes to one between selforthogonal codes over Fq2 and q-ary quantum codes for any prime power q. Index Terms — quantum stabilizer codes, nonbinary quantum codes, selforthogonal codes.
متن کاملQuantum Error Correcting Subsystem Codes From Two Classical Linear Codes
The essential insight of quantum error correction was that quantum information can be protected by suitably encoding this quantum information across multiple independently erred quantum systems. Recently it was realized that, since the most general method for encoding quantum information is to encode it into a subsystem, there exists a novel form of quantum error correction beyond the tradition...
متن کاملCyclic additive codes and cyclic quantum stabilizer codes
The theory of cyclic linear codes in its ring-theoretic formulation is a core topic of classical coding theory. A simplified approach is in my textbook [1]. The language of ring theory is not needed. We will present a self-contained description of the more general theory of cyclic additive codes using the same method. This includes cyclic quantum stabilizer codes as a special case. The basic in...
متن کاملQuantum Stabilizer and Subsystem Codes from Algebro-geometric Toric Codes
We show how to construct quantum stabilizer and subsystem codes from algebro-geometric toric codes extending the known construction of subsystem codes from cyclic codes and extending the construction of stabilizer codes from toric codes in an earlier work by one of the authors. Since algebrogeometric toric codes are higher dimensional extensions of cyclic codes, we obtain this way a new and ric...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review A
سال: 1997
ISSN: 1050-2947,1094-1622
DOI: 10.1103/physreva.55.4054